您现在的位置:您现在的位置: 一起学 >> 学历考试 >> 中考 >> 奥赛 >> 正文

参加高中奥赛必知

来源:一起学(yqx.cc)  2012-7-4 10:00:07   【一起学:终身教育引导者
  参考书:
  高中数学竞赛大纲(修订稿)
  高中数学竞赛大纲(修订稿)
  
  在“普及的基础上不断提高”的方针指引下,全国数学竞赛活动方兴未艾,特别是连续几年我国选手在国际数学奥林匹克中取得了可喜的成绩,使广大中小学师生和数学工作者为之振奋,热忱不断高涨,数学竞赛活动进入了一个新的阶段。为了使全国数学竞赛活动持久、健康、逐步深入地开展,应广大中学师生和各级数学奥林匹克教练员的要求,特制定《数学竞赛大纲》以适应当前形势的需要。
  
  本大纲是在国家教委制定的全日制中学“数学教学大纲”的精神和基础上制定的。《教学大纲》在教学目的一栏中指出:“要培养学生对数学的兴趣,激励学生为实现四个现代化学好数学的积极性”。具体作法是:“对学有余力的学生,要通过课外活动或开设选修课等多种方式,充分发展他们的数学才能”,“要重视能力的培养......,着重培养学生的运算能力、逻辑思维能力和空间想象能力,要使学生逐步学会分析、综合、归纳、演绎、概括、抽象、类比等重要的思想方法。同时,要重视培养学生的独立思考和自学的能力”。
  
  《教学大纲》中所列出的内容,是教学的要求,也是竞赛的最低要求。在竞赛中对同样的知识内容的理解程度与灵活运用能力,特别是方法与技巧掌握的熟练程度,有更高的要求。而“课堂教学为主,课外活动为辅”是必须遵循的原则。因此,本大纲所列的课外讲授内容必须充分考虑学生的实际情况,分阶段、分层次让学生逐步地去掌握,并且要贯彻“少而精”的原则,这样才能加强基础,不断提高。
  
  一试
  
  全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。
  
  二试
  
  1、平面几何
  
  基本要求:掌握初中数学竞赛大纲所确定的所有内容。
  
  补充要求:面积和面积方法。
  
  几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
  
  几个重要的极值:到三角形三顶点距离之和最小的点--费马点。到三角形三顶点距离的平方和最小的点--重心。三角形内到三边距离之积最大的点--重心。
  
  几何不等式。
  
  简单的等周问题。了解下述定理:
  
  在周长一定的n边形的集合中,正n边形的面积最大。
  
  在周长一定的简单闭曲线的集合中,圆的面积最大。
  
  在面积一定的n边形的集合中,正n边形的周长最小。
  
  在面积一定的简单闭曲线的集合中,圆的周长最小。
  
  几何中的运动:反射、平移、旋转。
  
  复数方法、向量方法。
  
  平面凸集、凸包及应用。
  
  2、代数
  
  在一试大纲的基础上另外要求的内容:
  
  周期函数与周期,带绝对值的函数的图像。
  
  三倍角公式,三角形的一些简单的恒等式,三角不等式。
  
  第二数学归纳法。
  
  递归,一阶、二阶递归,特征方程法。
  
  函数迭代,求n次迭代,简单的函数方程。
  
  n个变元的平均不等式,柯西不等式,排序不等式及应用。
  
  复数的指数形式,欧拉公式,棣莫佛定理,单位根,单位根的应用。
  
  圆排列,有重复的排列与组合,简单的组合恒等式。
  
  一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。
  
  简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。
  
  3、立体几何
  
  多面角,多面角的性质。三面角、直三面角的基本性质。
  
  正多面体,欧拉定理。
  
  体积证法。
  
  截面,会作截面、表面展开图。
  
  4、平面解析几何
  
  直线的法线式,直线的极坐标方程,直线束及其应用。
  
  二元一次不等式表示的区域。
  
  三角形的面积公式。
  
  圆锥曲线的切线和法线。
  
  圆的幂和根轴。
  
  5、其它
  
  抽屉原理。
  
  容斤原理。
  
  极端原理。
  
  集合的划分。
  
  覆盖。 来源:一起学(yqx.cc)- 奥赛

责编:admin4  收藏此页 打印 回到顶部